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Habitat loss, climate change, and emerging
conservation challenges in Canada1

Laura E. Coristine and Jeremy T. Kerr

Abstract: In Canada, habitat loss has pushed many more species to the brink of extinction than expected in a region with
extensive wilderness. However, species richness gradients depend strongly on climate, so species are concentrated in south-
ern regions, where agricultural and urban land uses are both intensive and extensive. Agricultural pesticide use is associated
with increasing rates of species endangerment in the south, but long-range transport of persistent organic pollutants is an
emerging issue in remote northern regions. Because their distributions reflect climate so strongly, climate change threatens
species throughout Canada. Evidence indicates that species’ distributions, phenologies, and interactions with pests and dis-
eases are changing more rapidly in response to climate change than global mean values. Nevertheless, climate change is ex-
pected to impose dispersal requirements that surpass species’ maximum rates. Habitat losses may interact with climate
change to impair species’ dispersal still further, creating the potential for widespread disruption of biological systems in the
most diverse areas of Canada. New research is urgently needed to address questions, and the ethics, around species translo-
cation, ecosystem engineering to anticipate future environmental conditions, and strategies to facilitate the persistence of
rare species in landscapes dominated by human activities.

Résumé : Au Canada, la perte des habitats pousse au bord de l’extinction beaucoup plus d’espèces que ce qu’on attend
d’une région qui contient d’immenses surfaces de nature sauvage. Cependant, les gradients de richesse en espèces sont forte-
ment reliés au climat, si bien que les espèces sont concentrées dans les régions plus au sud, dans lesquelles il y a une vaste
et intense utilisation des terres pour l’agriculture et l’urbanisation. L’utilisation des pesticides agricoles est associée à des
taux croissants de mise en péril des espèces dans le sud et le transport à grande échelle des polluants organiques persistants
devient un problème dans les régions nordiques éloignées. Parce que les répartitions des espèces suivent de si près le climat,
le changement climatique menace les espèces à travers le Canada et les données disponibles indiquent qu’en réaction au
changement climatique les répartitions d’espèces, les phénologies et les interactions avec les ravageurs et les maladies chan-
gent en moyenne plus rapidement qu’ailleurs sur la planète. Néanmoins, on s’attend à ce que le changement climatique re-
quière des taux de dispersion qui dépassent les capacités maximales des espèces. Les pertes d’habitats risquent d’interagir
avec le changement climatique pour réduire encore plus la dispersion des espèces et créer ainsi une disruption potentielle à
grande échelle des systèmes biologiques dans les régions les plus diversifiées du Canada. Il existe un besoin urgent de nou-
velles recherches pour examiner les questions, et aussi l’éthique, concernant la translocation des espèces, l’ingénierie des
écosystèmes afin d’anticiper les conditions futures de l’environnement, ainsi que les stratégies pour faciliter la persistance
des espèces rares dans les paysages dominés par les activités humaines.

[Traduit par la Rédaction]

Introduction

Global extinction rates currently exceed natural rates by
three or four orders of magnitude (Lawton and May 1995),
with large proportions of higher taxa considered at risk (Vié
et al. 2009). The majority of the world’s terrestrial area,
about 84% of land surfaces outside Antarctica, has been di-

rectly modified by expanding land uses, and a fifth to a quar-
ter of the world’s terrestrial primary productivity is consumed
by humans (Imhoff et al. 2004; Haberl et al. 2007). Habitat
loss has contributed to the decline of at least 85% of amphib-
ian, bird, and mammal species currently threatened with ex-
tinction (Baillie et al. 2004). By a vast margin, agricultural
land uses are the most common cause of habitat loss around
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the world, and may be set to expand considerably (Tilman et
al. 2001). Complicating this dilemma is the increasingly im-
portant role of climate change, as well as additional threats
posed by pollution arising from human land uses and long-
distance transport of contaminants to otherwise intact wilder-
ness areas.
Canada’s steep climatic gradients are known to exert

strong influences on geographical variability in species num-
bers (e.g., Currie 1991; Kerr and Packer 1997; Fig. 1).
Equally clearly, anthropogenic climate change is occurring
more rapidly in Canada than among countries more removed
from polar regions, altering the underlying environmental
conditions that influence the range limits of many species in
this region as well as, in many cases, their phenology (War-
ren et al. 2001; Parmesan and Yohe 2003; Root et al. 2003;
Roland and Matter 2007; Forister et al. 2010). Rapid, anthro-
pogenic climate change is effectively shuffling biotic com-
munities as species respond to changing climatic regimes
according to their particular niche requirements and dispersal
capacities.
Although rates of habitat loss in Canada are small relative

to nearly any other country (Sanderson et al. 2002), biodiver-
sity trends in Canada nevertheless mirror rates of decline ob-
served in developing countries (Kerr and Deguise 2004).
Predictions of the impacts of habitat loss have commonly re-
lied on the assumption that losses were randomly distributed
(Seabloom et al. 2002), but this assumption clearly does not
hold in Canada, where the most intensive and extensive land
uses are heavily concentrated in the southern biodiversity
hotspots (Kerr and Cihlar 2003; Fig. 1).
Here, we review the conservation consequences of highly

concentrated land-use changes that have occurred in Canada
since European settlement, including threats arising because
of such land use, and the increasingly evident implications
of rapid climate change for conservation in Canada. Through-
out this review, we provide quantitative perspectives on the
magnitudes of different threats that confront terrestrial spe-
cies in particular, drawing on published data. The apparently
disproportionate rates of endangerment in Canada can only
be understood in light of broader understanding of natural
gradients of species richness and their causes. The same
understanding illustrates the additional, crucial point that cli-
mate change is not only occurring faster in Canada than in
most other countries, but its influences on species conserva-
tion may be similarly precipitous. Where possible, we high-
light uncertainties that only new research can clarify and
underscore the prospects for policy responses that might alle-
viate aspects of the conservation challenge confronting Can-
ada in an era of accelerating global change.

Causes and consequences of habitat loss in
Canada
Gradients of species richness in Canada adhere closely to

spatial variation in climate, leading to vastly higher species
numbers in southern regions of the country. This trend has
been documented for plants, vertebrates, and an array of in-
vertebrate taxa (reviewed in Currie 1991; Hawkins et al.
2003; Currie et al. 2004). Over 75% of species at risk in
Canada reach their northern range limits in the south (Gibson
et al. 2009), where climatic conditions are a limiting factor in

range extent. Particularly large numbers of species are found
in ecologically distinctive regions such as the Mixed Wood
Plains of southern Ontario and Quebec, the Prairies, and the
Okanagan Valley in central British Columbia.
Agriculture is the most extensive human land use in Can-

ada. Since 1986, agricultural censuses suggest that the total
land area dedicated to commercial farming has not changed
substantially and represents 7.5% of the total land base of
Canada (or about 6.8 × 105 km2; Statistics Canada 2009).
Satellite measurements developed to quantify agricultural
land uses in Canada indicate that the physical extent of cover
and use types related to agriculture vary from estimates pro-
vided through semi-decadal censuses of agriculture. Exclud-
ing open grasslands in southern Canada, which are often
public lands used by private interests for grazing, agricultural
extent measured using SPOT 4/Vegetation satellite data at
1 km resolution is ~5.1 × 105 km2, or about 5.6% of the ter-
restrial area of Canada (Kerr and Cihlar 2003). Differences in
what constitutes “agriculture”, as well as differences in errors
associated with either technique, may account for differences
between questionnaire-based methods and satellite-based ob-
servation. Whatever the exact extent of agricultural lands,
there is agreement that land-use intensity has generally in-
creased in recent decades, with expanding use of monocul-
ture cropping and pesticide use (Krebs et al. 1999;
Malézieux et al. 2009).
The biotic consequences of such prevalent and spatially

concentrated habitat modification on species at risk are diffi-
cult to measure precisely because of limitations on knowl-
edge of past distributions of species and specific habitat
types, but the general impacts of concentrated habitat losses
are clear. The Prairie and Mixed Wood Plains ecozones are
disproportionately affected by habitat loss to agriculture and,
secondarily, to urban areas (see Table 1; Kerr and Cihlar
2004; Koper et al. 2010). It is no coincidence that many of
Canada’s terrestrial and aquatic species at risk are found in
these ecozones (Kerr and Cihlar 2004). Analyses of the
causes of habitat loss from the Canadian ranges of terrestrial
species at risk shows that up to 90% of losses are due to agri-
culture, when averaged across all species within ecodistricts
across Canada (Fig. 2a). Habitat losses to urbanization are
far smaller (Fig. 2b), but represent an increasingly important
threat. The mean proportion of range lost to urbanization in
areas where those effects are most pronounced is less than
2%. Even for species restricted to highly urbanized regions
of Canada, such as southern Ontario, urban areas tend to oc-
cupy less of a species range than agriculture.
Some ecosystems in southern Canada have been nearly

wholly converted to human use, with severe consequences
for species associated with those ecosystems. Karner Blue
butterflies (Lyceides melissa samuelis Nabokov, 1944), for
example, are an eastern subspecies of Melissa Blue butter-
flies (Lyceides melissa (W.H. Edwards, 1873)) and once in-
habited oak savanna habitats in southern Ontario. Its last
population was extirpated in 1991 (Packer 1994) during a
dry summer that likely reduced nectar supply from its obli-
gate host plant, the wild sundial lupine (Lupinus perennis
L.). By the time its population was reduced to a single local-
ity, simple environmental stochasticity delivered the coup de
grace, but nearly any factor could have extirpated the Karner
Blue at that stage. Nearly all of its population reduction
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resulted from the 99.8% loss of oak savanna habitats through-
out its range, the majority owing to agriculture (Nuzzo 1986).
Reintroduction of such species requires habitat restoration,
but restoring conditions that would lead to successful reintro-
duction has proven difficult (Chan and Packer 2006). Similar
impacts and difficulties with habitat restoration are readily
apparent elsewhere, such as among the Garry Oak wood-
lands, which have now largely been cleared for the urban
area of Victoria, on Vancouver Island (e.g., MacDougall et
al. 2004). The Garry Oak woodlands supports numerous CO-
SEWIC (Committee on the Status of Endangered Wildlife in
Canada) listed species, including 11 plants, 7 vertebrates, and
18 arthropods (Fuchs 2001). Although the Garry Oak habi-
tats have always been restricted to a tiny proportion of Cana-
da’s landmass, nearly 10% of Canada’s listed species occur here.
The spatial bias of habitat losses in Canada not only pre-

dicts numbers of species at risk that occur in different eco-

logical regions of the country (Kerr and Deguise 2004), but
also underscores a key research question. How can agricul-
tural and urban land uses be modified to accommodate the
habitat requirements of species native to these landscapes?
Emerging research areas, such as countryside biogeography
(e.g., Kerr et al. 2007), are capable of predicting numbers of
species that can persist in landscapes affected by varying lev-
els of disturbance and may prove particularly influential in
shaping practical strategies that address this challenge.

Conservation impacts of contaminants
Agricultural pesticides are linked to mortality in wildlife

populations and losses of species from agricultural land-
scapes (Benton et al. 2002; Ortego et al. 2007; Gibbs et al.
2009). In this respect, the conservation impacts of contami-
nants may be viewed as a repercussion of human land uses.

Fig. 1. Land use and cover in Canada, derived from 1 km SPOT 4/Vegetation data composited in 1998 and classified in 2000. Land uses,
which have been converted from natural cover types, are outlined by a white line. These uses are predominantly agricultural. Natural cover
types (e.g., deciduous or coniferous forest) cover most of the country. Significant disturbances in areas apparently dominated by wilderness
(e.g., mining operations) are not depicted here because they are usually too small to see at this scale. The map is projected using Lambert
Conformal Conic projection at 1 km resolution.
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Pesticides can be acutely toxic when ingested or absorbed by
birds and have been linked to reduced population levels for
several bird species (Mineau et al. 2005; Ortego et al. 2007).
Mortality of House Sparrows (Passer domesticus (L., 1758))
after ingestion of a single granule of an insecticide, 5% car-
bofuran, occurs in a matter of minutes (Mineau et al. 2005).
Because pesticide toxicity to wildlife is not fully tested prior
to approval for agricultural purposes, some pesticides are
slow to be removed from market despite evidence indicating
their potential negative impacts on wildlife species. Fonofos
was discontinued in 1999 as a result of its toxicity to raptors
and waterfowl, for example, yet at the time, three out of
seven pesticides known to cause avian mortality remained in
use (Flickinger et al. 1991; Hunt et al. 1991; Mineau et al.
2005; Elliott et al. 2008).
When pesticides leach into nearby streams and ponds they

can be lethal for aquatic species, sometimes in ways that es-
cape detection under controlled experimental conditions. For
example, Roundup, one of the most widely used agricultural
pesticides, increases mortality among amphibian populations
if it leaches into aquatic ecosystems and reaches moderate
concentrations, in the range of 1.5–15.5 mg active ingre-
dient/L (Giesy et al. 2000; Edginton et al. 2004). However,
when combined with stress induced by presence of predators
(that is, under natural conditions), the lethal concentration
that kills 50% of tadpoles of the genera Rana L., 1758, Bufo
Laurenti, 1768, and Hyla Laurenti, 1768 decreases substan-
tially to between 0.55 and 2.5 mg/L (Relyea 2005), which is
within the range of observed concentrations in natural envi-
ronments. However, pesticide impacts can be harmful to
wildlife populations at doses far below lethal. Among am-

phibians, trace pesticide presence can diminish tadpole
growth rates, affect metamorphosis, or induce abnormal be-
haviours (see reviews by Blaustein et al. 2003; Croteau et al.
2008, and references therein). Yet Canada is one of the only
developed nations where point-of-use pesticide application is
not tracked (Boyd 2001; Mineau et al. 2005). Where some
level of tracking occurs, changes to chemical formulations,
sampling protocol, and definitions of tracked substances re-
sult in non-comparable temporal data (Boyd 2001; Yao et al.
2008).
Modifications to agricultural practices, such as reducing

pesticide loads, maintaining habitat heterogeneity adjacent to
agricultural areas, and limiting monoculture cropping can
provide significant ecological benefits. These include increas-
ing numbers of native species that may persist in even rela-
tively intensively managed agricultural landscapes and
improving agricultural productivity through retention or im-
provement of ecosystem services, such as pollination and
pest control (Krebs et al. 1999; Goulet 2003; Ortego et al.
2007; Collard et al. 2009; Malézieux et al. 2009). The wide-
spread recovery of at-risk raptor populations in North Amer-
ica, such as American Peregrine Falcons (Falco peregrinus
anatum Bonaparte, 1838), following limits imposed on DDT
use, the breakdown products of which act to thin eggshells
(Ratcliffe 1967), provides an example of a clear conservation
benefit to a changed agricultural practice (Millsap et al. 1998;
Brown et al. 2007).
Because agriculture and urban areas are heavily concen-

trated in the south, their main biological impacts are in those
areas, but the effects of industrial activities confront even the
most remote northern wildlife populations. Long-range trans-

Table 1. A comparison of some habitat loss and climate change threats facing Canadian biodiversity and examined according to 15 terres-
trial ecozones in Canada.

Ecozone
Area
(km2)*

Cropland (% of
ecozone)*

Pesticide use
($/km2)*,†

Invasive
species (n)‡

COSEWIC
species (n)§

Population density
(persons/km2)*

Climate change
1960–2006 (°C)||

Prairie 443 159 86.6 (1) 379.7 (1) 116 (6) 34 (4) 1018.6 (4) 2.02 (8)
Mixed Wood Plain 107 017 68.2 (2) 131.0 (2) 139 (1) 107 (1) 15522.4 (1) 0.35 (15)
Boreal Plains 668 664 23.0 (3) 79.3 (3) 93 (7) 14 (8) 121.4 (7) 2.96 (4)
Atlantic Maritime 192 017 10.4 (4) 19.6 (4) 130 (2) 33 (6) 1330.1 (3) 0.76 (14)
Montane Cordillera 474 753 1.5 (5) 4.3 (7) 117 (5) 34 (5) 184.0 (5) 2.86 (6)
Pacific Maritime 192 200 1.0 (6) 7.0 (5) 124 (3) 38 (2) 1639.0 (2) 1.71 (10)
Boreal Shield 1 640 949 0.6 (7) 5.1 (6) 123 (4) 36 (3) 175.9 (6) 1.34 (11)
Taiga Plains 569 363 0.2 (8) na (8) 27 (10) 10 (9) 3.9 (9) 4.05 (2)
Arctic Cordillera 234 708 0 (9) na (8) 1 (15) 4 (14) 0.6 (14) 1.16 (12)
Boreal Cordillera 459 864 0 (9) na (8) 29 (8) 6 (12) 7.0 (8) 3.29 (3)
Hudson Plain 359 546 0 (9) na (8) 28 (9) 6 (12) 2.4 (11) 1.13 (13)
Northern Arctic 1 371 340 0 (9) na (8) 2 (14) 10 (9) 1.7 (13) 2.02 (8)
Southern Arctic 702 542 0 (9) na (8) 13 (12) 7 (11) 2.3 (12) 2.90 (5)
Taiga Cordillera 264 213 0 (9) na (8) 7 (13) 3 (15) 0.2 (15) 6.05 (1)
Taiga Shield 1 122 504 0 (9) na (8) 24 (11) 21 (7) 3.7 (10) 2.10 (7)
Note: Threats differ by ecozone and correspond differentially to gradients of habitat loss, climate change, and species richness. Rank scales of 1–15 are

provided in parentheses, where 1 represents the worst possible ranked score for biodiversity.
*Data from Statistics Canada (2009), based on data from the 2006 census.
†Data normalized to 1992 value.
‡Data from CFIA (2008), based on 162 mapped invasive plant species.
§Data from NRCAN (2010), includes endangered, threatened, and special concern as designated by the Committee on the Status of Endangered Wildlife in
Canada (COSEWIC).
||Based on data provided by Dan McKinney (personal communication). Climate values determined from zonal statistics of annualized mean difference in
January temperature from 1960 to 2006.
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port of persistent organic pollutants (POPs) across vast terres-
trial, aquatic, and marine areas in the north would seem to
present little risk, especially as Canada has banned many
POPs. However, POPs are still manufactured and used in
other countries (Jones and de Voogt 1999; Kelly and Gobas
2001; Environment Canada 2010). Biomagnification and
transport by biological vectors can concentrate contaminants
considerably (Krümmel et al. 2003; Blais et al. 2005; Daly
et al. 2007). For example, Northern Fulmars (Fulmarus gla-
cialis (L., 1761)) in the Canadian Arctic feed on a variety of
marine organisms over very broad areas, concentrating orga-
nochlorines and heavy metals in their tissues. These seabirds
nest in massive colonies on cliffs, leading to deposition of
pollutants in ponds below the cliffs, where DDT concentra-
tions may increase 60-fold and mercury concentrations in-
crease 25-fold (Blais et al. 2005). Analogous biological
transport of polychlorinated biphenyls by salmon into their
spawning lakes has been observed in the western Arctic
(Krümmel et al. 2003). These concentrated POPs then enter
new terrestrial and aquatic food webs (Evenset et al. 2004).
Many species show population and fitness declines as a result
of POP exposure, including the Lesser Kestrel (Falco nau-
manni Fleischer, 1818), Glaucous Gull (Larus hyperboreus
Gunnerus, 1767), and polar bear (Ursus maritimus Phipps,
1774) (Bustnes et al. 2003; Ortego et al. 2007; Letcher et al.
2010). The long half-life of some POPs (Crowe and Smith
2007), particularly in soil and water (Sinkkonen and Paasi-
virta 2000), means that long-range transport, concentration,
and uptake by new food webs represent serious conservation
issues, irrespective of policy and legislative action in Canada.
Although concentrations of many historic contaminants

have declined (Braune et al. 2005), recently introduced pollu-
tants such as brominated flame retardants (PBDE) have been
detected in arctic species including polar bears, ringed seals
(Pusa hispida (Schreber, 1775)), and arctic seabirds (Ikono-
mou et al. 2002; Braune and Simon 2004; Muir et al. 2006).
However, other changes are underway in northern environ-
ments that may exert greater effects on the conservation out-
look for species.

Climate change

Anthropogenic climate changes are proceeding rapidly
(IPCC 2007a), with temperature increases at northern lati-
tudes nearly double the global mean value (IPCC 2007b).
The rate of climate change is expected to increase and will
include rising global temperatures, changes to precipitation
patterns, and increased weather extremes. Projected tempera-
ture increases for 2100 range between 1.8 and 4.0 °C (IPCC
2007a). Updated modeling of climate scenarios, including
more detailed consideration of the terrestrial carbon–nitrogen
cycle, cooling effects of 20th-century volcanic emissions, and
current trends for economic activity and consequent emis-
sions leads to a median prediction of 5.2 °C increase by
2100 (Sokolov et al. 2009), a larger difference in global tem-
perature relative to the present day than the contrast between
the height of the last glacial period and the present day. Ad-
ditional positive feedbacks, such as diminishing arctic ice ex-
tent, which has occurred faster than expected (Barber et al.
2009), and distributional changes to vegetation were not in-

cluded in the 2007 models (IPCC 2007b) and may further el-
evate projected warming by 3 °C (Rockström et al. 2009).
Climate change can exacerbate the impacts of other major

extinction drivers, such as habitat loss, contaminants, and in-
vasive species. Additionally it may disrupt biotic interactions
(Mora et al. 2007; Brook et al. 2008) and may involve
threshold shifts that alter climatic regimes abruptly (Griffis
and Rouse 2001; Lenton et al. 2008). Research on the effects
of climate change have yielded evidence of very serious con-
servation challenges (see Wilson et al. 2005; Pounds et al.
2006; Thomas et al. 2006; Kerr et al. 2007; Kharouba et al.
2009). Biological impacts of climate change have already
been noted in terms of species’ geographical range shifts
(Chapin et al. 2004; Wilson et al. 2005; Franco et al. 2006;
Jarema et al. 2009), trophic interactions (Brook et al. 2008;
Post and Forchhammer 2008; Post et al. 2008; Both et al.
2009), and vulnerability to disease and invasive species
(Pounds et al. 2006; van der Wal et al. 2008). These effects
represent systematic trends with considerable long-term ram-
ifications. Evidence increasingly suggests that climate change
could prove catastrophic for biodiversity conservation in
many areas, possibly exceeding even the massive negative ef-
fects of habitat loss (Thomas et al. 2004; Jetz et al. 2007; Se-
kercioglu et al. 2008). In areas where species richness is
particularly high, climate change may threaten species dispro-
portionately (Malcolm et al. 2006) because species may be
more susceptible to small climatic differences (Pounds et al.
1999; Macdonald 2005).

Climate change: range shifts
Distributional limits of species ranges are generally dic-

tated by temperature and water availability. Because climate
change directly influences both, directional range shifting is
considered a signature trait for species pushed beyond cli-
matic tolerances (Parmesan and Yohe 2003). Species in Can-
ada are extending their northern limits at rates between 21–
200 km/decade (see Table 2). The global mean value is
6.1 km/decade (Parmesan and Yohe 2003). A 1 °C increase
in temperature corresponds to a poleward shift of 100–
133 km in latitude or 167 m in elevation, within the temper-
ate zone (Hughes 2000). Upward elevational shifts normally
require small geographical shifts but involve a decrease in
habitable area, and thus population size. Poleward shifts in-
volve longer distances and if species fail to track shifting
range boundaries, their ranges may shrink. Several studies
have examined the correspondence between climate change
and range shifts. The tree line in the boreal forest has shifted
90–120 m upwards in elevation over the past 40 years. Dur-
ing the same time period, the temperature isotherm shifted by
208 m (Beckage et al. 2008), suggesting a mismatch in envi-
ronmental change rates relative to species’ capacity to estab-
lish in new areas, even along relatively short distances in
mountains. Similarly, geographical ranges of two butterfly
species, Edith’s checkerspot (Euphydryas editha (Boisduval,
1852)) and the northern brown argus (Aricia artaxerxes (Fab-
ricius, 1775)), have declined, apparently because these spe-
cies have been unable to extend their ranges rapidly enough
to track shifting temperatures (Parmesan 1996; Franco et al.
2006). Evidence of directional range shifts has accumulated
over the past decade (Parmesan et al. 1999; Thomas and
Lennon 1999; Roland and Matter 2007; Forister et al. 2010).
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However, considerable uncertainty remains over species’ dis-
persal capacity relative to dispersal need, given rapid climate
change. Biomes in Canada that will require the greatest dis-
persal rates (for temperature-limited species) include the Bor-
eal Forest – Taiga (0.43 km/year) and Temperate Grasslands
(0.59 km/year) (see Table 3). Within 100 years, protected
areas within three of Canada’s biomes may no longer include
the original habitat or species that they were designed to pro-
tect, simply as a result of the rate of change (Loarie et al.
2009). Longstanding protected areas, which have had rela-
tively stable habitat conditions over the past 80 years, do not
appear to retain species affected by climate change more ef-
fectively than unprotected areas (Kharouba and Kerr 2010).
Species that must shift their geographical ranges to remain

within climatically suitable areas present an emerging conser-
vation challenge, given historical reliance on immoveable
protected areas. Many species are relatively poor dispersers,
particularly among specialists. For instance, host-plant specif-
icity of some butterflies limits poleward range extension.
Failure of their host plant to shift can result in range loss
among both host and butterfly (Pelini et al. 2009). Although
some species may be sufficiently flexible to adapt and use
new resources, evidence to date indicates that such fortuitous
events will be rare at best. Even among generalist, widespread
butterfly species in Canada, a century of climate and land-use
changes has led to widespread geographical range shifts
(Kharouba et al. 2009), not systematic differences in host-
plant use (Fig. 3). Research, as well as an ethical examination
of translocation of species and potentially entire ecosystems
that may include biotic communities without present-day ana-
logue, needs to be given a high priority given that even con-
servative estimates of extinction risk could eventually
encompass as many as 37% of species (Thomas et al. 2004).
Biotic interactions also influence species distribution and

abundance and may further complicate predictions of climate
change impacts on species distributions (Davis et al. 1998).
Range-restricted and widespread species are affected by cli-
mate to a similar extent (Szabo et al. 2009). However, biotic
interactions may become a limiting factor for range shifts of
range-restricted species (Preston et al. 2008; Oliver et al.
2009). Predictions of future geographical range shifts depend
on the use of models linking observed ranges to broad-scale
climate and environmental effects. These predictions are
likely to underrate the significance of microclimatic variabil-
ity that facilitates species persistence within otherwise unsuit-
able areas, particularly in topographically heterogeneous
regions (Willis and Bhagwat 2009). Among species at risk,
rapid and widespread climate change is likely to degrade
conservation prospects, not improve them.
Understanding climatic influences on species’ ranges will

be essential to predicting the array of possible responses to

climate change. Evidence to date suggests that climate
strongly affects species distributions and will likely continue
to do so as climate changes (Franco et al. 2006; Malcolm et
al. 2006; Sekercioglu et al. 2008; Sharma et al. 2009). Fur-
ther complicating predictions of species’ range shifts result-
ing from climate change is variability in their tolerance to
climate within their range (Oliver et al. 2009). Overall, spe-
cies respond individualistically to climate change (Lesica and
McCune 2004; Bokhorst et al. 2008), but the same may also
be true for populations within a species.
Species at risk in Canada often include peripheral popula-

tions and these leading (i.e., northern) edge populations may
respond differently to climate change than those nearer the
core of the species’ range, or at its trailing (i.e., southern)
margins. Peripheral populations can be characterized by low
densities (Gibson et al. 2009). A classic view of species ex-
tinction is that geographical ranges collapse toward the large,
ostensibly densely populated core areas. The reality in North
America is that the loss of geographical range is more fre-
quently toward the edge (Channell and Lomolino 2000).
Nevertheless, loss of populations and range restriction have
been recorded at both the leading and the trailing edges for a
wide variety of taxa (Parmesan and Yohe 2003; Lesica and
McCune 2004; Hampe and Petit 2005; Franco et al. 2006;
Hickling et al. 2006; Li et al. 2009). In fact, paleo-environ-
mental records show that fluctuating species populations
with erratic local extinction and colonization patterns are
common during periods of directional climate change (Hewitt
1996; Liow and Stenseth 2007; MacDonald et al. 2008). De-
tecting broad-scale, directional shifts in the distribution of
species may represent a useful, additional barometer of how
species are affected by climate change. New approaches to
detecting such changes are necessary, given the fragmented
historical data available to serve as baseline indications of
species distributions in the recent past.

Climate change: phenology and trophic mismatch
As climate changes, the timing of seasonal events such as

migration, breeding, and hibernation is shifting for many spe-
cies (Parmesan and Yohe 2003; Root et al. 2003). In Canada,
phenological shifts of 1.4–18 days/decade have been recorded
for a variety of species (see Table 4). The global mean value,
based on a meta-analysis of 203 species, is 3.4 days/decade
(Parmesan 2007). Trophic mismatch occurs when develop-
ment shifts at a different rate than resource availability, in re-
sponse to changing climatic conditions, and has been
observed for insects (Visser and Holleman 2001; Høye and
Forchhammer 2008), birds (Both and Visser 2005; Pearce-
Higgins et al. 2005; Dickey et al. 2008; Møller et al. 2008;
Both et al. 2009; Jones and Cresswell 2010), amphibians
(Parmesan 2007), and mammals (Post and Forchhammer
2008; Post et al. 2008; Gilg et al. 2009).

Fig. 2. (a) The proportional area within each of Canada’s ecodistricts that consists of agricultural land uses, according to satellite imagery
(data from Kerr and Cihlar 2003). Ecodistricts represent the most detailed level of Canada’s national stratification of ecological conditions.
Areas of grassland are excluded from this calculation, as the intensity of this land use is much lower than for cropped areas and these lands
are not readily distinguishable from natural areas. Ecoregional boundaries are overlaid in white to delineate more generalized ecological dif-
ferences. The map is projected using Lambert Conformal Conic projection at 1 km resolution. (b) The proportional area within each of Ca-
nada’s ecodistricts that consists of urban land uses (data from Kerr and Cihlar 2003). Ecodistricts represent the most detailed level of
Canada’s national stratification of ecological conditions. Ecoregional boundaries are overlaid in white to delineate more generalized ecological
differences. The map is projected using Lambert Conformal Conic projection at 1 km resolution.
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Asynchrony across trophic levels is increasing as climate
changes (Both and Visser 2005; Both et al. 2009). In a study
with multi-trophic levels conducted over a 20-year span, leaf-
out did not advance significantly, caterpillar peak advanced
0.75 days/year, hatching date of four insectivorous bird spe-
cies advanced by 0.36–0.5 days/year, and hatching date of
an avian predator did not advance significantly (Both et al.
2009). Trophic mismatch may cause population declines
(Jones and Cresswell 2010), extinction (Gilg et al. 2009), or
provide the impetus for new biotic communities to form
(Walker et al. 2006).
Phenological shifts are pronounced in arctic habitats (Høye

et al. 2007; Parmesan 2007) and at lower trophic levels
(Stenseth et al. 2002; Both et al. 2009), but in all cases the
consequences of such changes can be subtle or delayed. Pop-
ulation dynamics among caribou (Rangifer tarandus (L.,
1758)) (Post and Stenseth 1999; Tyler et al. 2008) depend
strongly on past environmental conditions. Arctic commun-
ities appear particularly vulnerable to changing trophic or
other biotic interactions (Schmitz et al. 2003; Vinebrooke et
al. 2003). When arctic foxes (Alopex lagopus (L., 1758) =
Vulpes lagopus (L., 1758)) were introduced to subarctic is-
lands, a collapse in seabird populations resulted. The loss of
nutrient transfer, by the birds, drove a compositional shift in
flora, and the landscape was changed from grassland to tun-
dra (Croll et al. 2005). Similarly, geographical range expan-
sion among red foxes (Vulpes vulpes (L., 1758)) is
associated with range retraction among arctic foxes (Her-
steinsson and Macdonald 1992). Climate change is increasing
resource availability for red foxes, which limits their north-
ward expansion, but the presence of highly competitive red
foxes limits the southern distribution of arctic foxes.
Phenology among birds can also depend strongly on cli-

matic conditions. In response to increased temperatures and
decreased spring snow cover, egg laying and hatching of the
Greater Snow Goose (Chen caerulescens atlantica Kennard,
1927) occurred progressively earlier over a 16-year period.
Yet, gosling mass and size at fledging were lower and there
was an overall decline in reproductive success, potentially
owing in part to trophic mismatch (Dickey et al. 2008). Spe-
cies in urban areas experiencing heat-island effects, which
provide a kind of microcosm view of eventual climate change
responses, also demonstrate enhanced phenological shifts
(Primack et al. 2004; Houle 2007). Nevertheless, some spe-
cies, including long-distance migratory bird species with de-
clining populations, show either stable or delayed timing of
migration (Peñuelas and Filella 2001; Møller et al. 2008). In
a long-term study of migratory bird species, population de-
clines from 1970 to 1990 were associated with habitat param-
eters, whereas subsequent declines were related to failure to
advance spring migration phenology (Møller et al. 2008).
Long-distance migrations require storage of sufficient resour-
ces to enable massive energy expenditures, as well an array
of ancillary adaptations (for an excellent review see Weber
2009). If aspects of environmental change limit resource
availability during limited feeding seasons, migrations may
be delayed as a result. Changes to even single species in
complex food webs may lead to complex ramifications across
food webs (reviewed in Walther et al. 2002).
Many species have shown rapid phenological shifts in re-

sponse to climate change. Of course, changing climatic con-Ta
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ditions will affect species depending primarily on photoper-
iod relatively little (Both et al. 2009). Species with tempera-
ture, precipitation, and snow-cover-mediated phenologies,
however, have responded quickly to climate change (Høye et
al. 2007; Brook 2009), which may alter trophic interaction
substantially. Recent estimates of mean phenological shifts in
the Northern Hemisphere are 2.8 days/decade (Parmesan
2007). However, arctic regions are experiencing the greatest
rates of phenological advance across a variety of taxa (Par-
mesan 2007; Høye and Forchhammer 2008). Populations of
arctic red squirrels advanced breeding by 18 days in a 10-
year time span (Réale et al. 2003; Berteaux et al. 2004). Part
of this phenological change resulted from phenotypic plasti-

city, but a smaller proportion of this shift resulted from ge-
netic changes, potentially representing a rapid evolutionary
response to selective pressures applied by climate change.
Among an array of arctic arthropods, plants, and birds, phe-
nologies have shifted, on average, by 14.5 days in a single
decade, and arthropod emergence advanced by more than
20 days in a third of the species examined (Høye et al.
2007). Snow cover appears to be the dominant trigger for ad-
vance of spring phenology in northerly regions (Høye et al.
2007; Høye and Forchhammer 2008). These rapid phenolog-
ical shifts are generating substantial concern that current and
projected rates of climate change will not long be matched by
organisms’ phenotypic plasticity or potential to adapt (Visser

Table 3. A comparison of the predicted rates of climate change and persistence time for protected
areas by biome.

Rate of required
migration (km/year)

Estimated persistence time for
protected areas (years)

Temperate Coniferous Forests 0.11 50% erosion within 100 years
Tundra 0.29 >1000
Temperate Broadleaf Forests 0.35 <100
Boreal Forest – Taiga 0.43 <100
Temperate Grasslands 0.59 <100

Note: Rates are calculated as global mean values and may differ from values based on Canadian data. Data from
Loarie et al. (2009).

Fig. 3. Changes in butterfly species richness, expressed as a percent increase, between 1900–1930 and 1960–1990, based on observations and
models of species’ geographical range shifts following climate change (data from Kharouba et al. 2009). Species included in this estimate are
relatively widespread and common. Northward range extension has not been systematically considered among rarer, more range-restricted
species in Canada. It is worth noting that range extensions among common species have been into relatively intact ecosystems north of
human-dominated lands. The map is projected using Lambert Conformal Conic projection with ~44 km pixel resolution.
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and Holleman 2001; Réale et al. 2003; Brook 2009). In-
creased research into the consequences of continued changes
in phenological timing is urgently needed.

Climate change: invasive species and disease outbreaks
Climate change has been linked to increases in insect out-

break severity, incidence, and range (Logan et al. 2003; Bat-
tisti et al. 2005; Jepsen et al. 2008; Raffa et al. 2008). Insect
life cycles are temperature dependent, exhibiting faster cycles
at higher temperatures and when ranges are cold-limited
(Fleming and Candau 1998). Moreover, intermittent plant
stress from either drought or extreme weather augments plant
susceptibility to pest species (Fleming and Candau 1998;
Huberty and Denno 2004; Chown et al. 2007). Climate
change is predicted to increase the likelihood of both drought
and stochastic weather events (IPCC 2007b).
Canada currently has 486 invasive non-indigenous plant

species (CFIA 2008). Invasive species may have played roles
in reducing the viability of some native species (Maerz et al.
2009; Régnière et al. 2009), contributing to the need to list up
to 22% of Canada’s species at risk (Venter et al. 2006), and are
often concomitant with habitat loss. An additional 615 invasive
plant species currently have northern distributional limits near
the Canada–US border. Extreme habitat disturbance in many
areas of southern Canada may facilitate northward range ex-
pansion for some of these potential invading species, particu-
larly given ongoing climate change (CFIA 2008).
Warming temperatures, when coupled with a disease out-

break, have led to declines and extinction of populations of
native species (Pounds et al. 2006; Steventon and Daust
2009) promoting invasive species success (Chown et al.
2007; van der Wal et al. 2008) by relaxing thermal constraints
(MacDougall and Turkington 2005; Raffa et al. 2008; Ré-
gnière et al. 2009). A study of regional warming effects on
herbaceous angiosperms in northern Nova Scotia found that
20 out of 23 species flowering in January were introduced
species in disturbed habitat (Garbary and Taylor 2007).

Synergisms
Evidence indicates that synergistic interactions occur

among extinction risk factors and can dramatically alter con-
servation outcomes (Davies et al. 2004; Pounds et al. 2006;
Mora et al. 2007; Brook et al. 2008; Darling and Cote
2008). A meta-analysis of 112 experiments, which examined
multiple stressors, found that one-third of the studies demon-
strated synergistic effects driving population extinction (Dar-
ling and Cote 2008). When multiple threats operate together,
population resilience to perturbations is suppressed more than
expected based on the additive effects of individual factors.
In an experimental study, the simultaneous occurrence of
habitat fragmentation, harvesting, and warming resulted in
rotifer populations declining up to 50 times faster than popu-
lations challenged by single threats (Mora et al. 2007). Re-
sults such as these underscore the necessity of expanding
evaluation of potential extinction drivers to include field-
based research that considers multiple stressors.

Listing species at risk
In principle, legislation could stave off extinction or even

facilitate the recovery and eventual de-listing for species thatTa
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are susceptible to the threats described in this review. The
process of listing species under the Species At Risk Act
(SARA) in Canada triggers helpful protections, such as re-
stricting direct take of the species and harm to its residence.
Obviously, this protection is not always extended to habitats
required by the species. The listing process includes criteria
apart from extinction risk, and status as a species at risk im-
perfectly represents degree of endangerment. Species threat-
ened as a result of exploitation or harvesting are less likely
to be listed under SARA, irrespective of whether that har-
vesting is the cause of their endangerment (Mooers et al.
2007; Findlay et al. 2009). Among the most startling exam-
ples of species in this category is the Atlantic cod (Gadus
morhua L., 1758), which according to evidence has declined
by more than 99% yet remains unlisted (Hutchings and Rey-
nolds 2004). In an interesting example of the Prisoner’s Di-
lemma, the responsible agency indicates a refusal to list
because, among other reasons, Canada could not protect pop-
ulations occurring beyond its 200 nautical mile (1 nautical
mile = 1.852 km) exclusion zone (DFO 2005). Although it
would clearly be in the long-term interests of all international
parties to recover this fishery, the short-term losses entailed
by protection contribute to the decision not to list the species.
A similar example is provided by the porbeagle shark
(Lamna nasus (Bonnaterre, 1788)), which is exploited in a
very small fishery operated by one or two fishers (the maxi-
mum value of which is estimated at CAN$1.82 million over
20 years; DFO 2006 in Mooers et al. 2007) and that has de-
clined by ~90% (Reynolds et al. 2005). Beyond a failure to
list species that biological observations suggest are at risk of
extinction, some species have had their critical habitat desig-
nations eliminated or simply left unspecified. The Federal
Court of Canada recently ruled that this practice is illegal
but did not require listing of species even if risks to them ap-
pear unequivocal.2 The decision to list species under SARA
rests with the Minister, so protection of species against
threats posed by climate and land-use changes, among others,
remains discretionary.

Conclusions
Habitat losses to agricultural land uses, but increasingly to

urban areas, have contributed substantially to the endanger-
ment of many species in Canada. Although these land-use
changes are highly concentrated and account for very little
of Canada’s total area, their effects have proven extremely
large relative to their extent precisely because they predomi-
nate in the most diverse regions of the country and among
especially restricted habitat types, such as oak savannas.
Given that the most extensive human land uses are roughly
coincident with the most species-rich areas of Canada, there
is perhaps no more urgent challenge than discovering ways
to facilitate conservation in human-dominated landscapes.
Unfortunately, rapidly changing climates have already led to
extensive biological impacts in Canada, evidence for which
we have summarized here. Geographical range shifts, pheno-
logical changes, and changes in species’ abundances can sub-
stantially change dynamics within biological communities,

leading to effects that may permeate throughout food webs
and entire ecosystems. Progress has been made in predicting
such effects, but these areas require greatly expanded re-
search attention. Climate change is not the only factor that
may affect species remote from direct human impacts: bio-
logical vectors can transport and concentrate pollutants in
highly localized areas, rendering otherwise diffuse contami-
nants biologically available. Factors that directly modify spe-
cies’ extinction risk can also exert more subtle, but
potentially very important, effects by changing biotic interac-
tions. Ultimately, conserving species at risk of extinction in-
volves more than just protecting residual habitats for species
that have been listed. A number of species that appear, on bi-
ological grounds, sufficiently imperiled to merit listing are
excluded from formal protection for reasons that do not relate
to scientific evidence. When coupled with the need to find
ways to mitigate the direct effects of factors causing extinc-
tion, such as climate and land-use change or the biological
effects of pollutants, and predict how all of these factors may
interact, it is apparent that conservation biologists in Canada
have an array of important research challenges to meet. It is
equally clear, however, that the principal causes of species
decline have probably been identified correctly and there is
sufficient scientific evidence to provide robust policy advice.
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